Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
Theor Appl Genet ; 137(6): 130, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744692

KEY MESSAGE: Genome-wide association study of color spaces across the four cultivated Capsicum spp. revealed a shared set of genes influencing fruit color, suggesting mechanisms and pathways across Capsicum species are conserved during the speciation. Notably, Cytochrome P450 of the carotenoid pathway, MYB transcription factor, and pentatricopeptide repeat-containing protein are the major genes responsible for fruit color variation across the Capsicum species. Peppers (Capsicum spp.) rank among the most widely consumed spices globally. Fruit color, serving as a determinant for use in food colorants and cosmeceuticals and an indicator of nutritional contents, significantly influences market quality and price. Cultivated Capsicum species display extensive phenotypic diversity, especially in fruit coloration. Our study leveraged the genetic variance within four Capsicum species (Capsicum baccatum, Capsicum chinense, Capsicum frutescens, and Capsicum annuum) to elucidate the genetic mechanisms driving color variation in peppers and related Solanaceae species. We analyzed color metrics and chromatic attributes (Red, Green, Blue, L*, a*, b*, Luminosity, Hue, and Chroma) on samples cultivated over six years (2015-2021). We resolved genomic regions associated with fruit color diversity through the sets of SNPs obtained from Genotyping by Sequencing (GBS) and genome-wide association study (GWAS) with a Multi-Locus Mixed Linear Model (MLMM). Significant SNPs with FDR correction were identified, within the Cytochrome P450, MYB-related genes, Pentatricopeptide repeat proteins, and ABC transporter family were the most common among the four species, indicating comparative evolution of fruit colors. We further validated the role of a pentatricopeptide repeat-containing protein (Chr01:31,205,460) and a cytochrome P450 enzyme (Chr08:45,351,919) via competitive allele-specific PCR (KASP) genotyping. Our findings advance the understanding of the genetic underpinnings of Capsicum fruit coloration, with developed KASP assays holding potential for applications in crop breeding and aligning with consumer preferences. This study provides a cornerstone for future research into exploiting Capsicum's diverse fruit color variation.


Capsicum , Fruit , Phenotype , Pigmentation , Polymorphism, Single Nucleotide , Capsicum/genetics , Capsicum/growth & development , Fruit/genetics , Fruit/growth & development , Pigmentation/genetics , Color , Genotype , Genome-Wide Association Study , Quantitative Trait Loci , Cytochrome P-450 Enzyme System/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genetic Variation
2.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38675385

Medicinal plants have been utilized since ancient times for their therapeutic properties, offering potential solutions for various ailments, including epidemics. Among these, Leptadenia reticulata, a member of the Asclepiadaceae family, has been traditionally employed to address numerous conditions such as diarrhea, cancer, and fever. In this study, employing HR-LCMS/MS(Q-TOF) analysis, we identified 113 compounds from the methanolic extract of L. reticulata. Utilizing Lipinski's rule of five, we evaluated the drug-likeness of these compounds using SwissADME and ProTox II. SwissTarget Prediction facilitated the identification of potential inflammatory targets, and these targets were discerned through the Genecard, TTD, and CTD databases. A network pharmacology analysis unveiled hub proteins including CCR2, ICAM1, KIT, MPO, NOS2, and STAT3. Molecular docking studies identified various constituents of L. reticulata, exhibiting high binding affinity scores. Further investigations involving in vivo testing and genomic analyses of metabolite-encoding genes will be pivotal in developing efficacious natural-source drugs. Additionally, the potential of molecular dynamics simulations warrants exploration, offering insights into the dynamic behavior of protein-compound interactions and guiding the design of novel therapeutics.

3.
Eur J Obstet Gynecol Reprod Biol ; 296: 311-315, 2024 May.
Article En | MEDLINE | ID: mdl-38518485

OBJECTIVE: To compare the clinical appearance of "no residual disease" to the histological assessment of the same tissue when treated with PlasmaJet®. To determine if the treated tissue with a clinical appearance of "no residual disease" demonstrated histologically apparent damage to underlying structures. AIM: The main aims of the study were to compare the clinical appearance of 'no residual disease' to the histological assessment of the same tissue and to assess whether treatment with PlasmaJet® to produce a clinical appearance of 'no residual disease' causes no histologically apparent damage to the underlying structures. METHOD: This prospective cohort study was conducted in Liverpool Women's NHS Foundation Trust between January 2019 and June 2020. Women with a diagnosis of advanced or presumed advanced stage ovarian cancer were approached and 20 women were recruited into the study. Tissue samples were collected from women with stage 3 or 4 ovarian cancer at either primary or interval debulking surgery. RESULTS: The clinical appearance of no residual disease was confirmed histologically in 84 % (n = 16) of cases. Fat was the only underlying tissue seen damaged in 21 % (n = 4) of cases. Bowel resection with stoma formation was needed in one case (5.26 %). CONCLUSION: PlasmaJet® ablated the malignant tissue in majority of the cases without causing any significant damage to the underlying tissue, it also reduced the need for stoma formation. This is a small study with encouraging results. PlasmaJet® could be a valuable tool in ovarian cancer surgery, it potentially could reduce the need for bowel surgery and allow treatment of significant mesenteric disease with reduced morbidity for the patient.


Ovarian Neoplasms , Female , Humans , Prospective Studies , Carcinoma, Ovarian Epithelial/pathology , Ovarian Neoplasms/pathology , Cytoreduction Surgical Procedures/methods
4.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article En | MEDLINE | ID: mdl-37958599

Cancer researchers are fascinated by the chemistry of diverse natural products that show exciting potential as anticancer agents. In this study, we aimed to investigate the anticancer properties of watermelon rind extract (WRE) by examining its effects on cell proliferation, apoptosis, senescence, and global gene expression in human renal cell adenocarcinoma cells (HRAC-769-P) in vitro. Our metabolome data analysis of WRE exhibited untargeted phyto-constituents and targeted citrulline (22.29 µg/mg). HRAC-769-P cells were cultured in RPMI-1640 media and treated with 22.4, 44.8, 67.2, 88.6, 112, 134.4, and 156.8 mg·mL-1 for 24, 48, and 72 h. At 24 h after treatment, (88.6 mg·mL-1 of WRE) cell proliferation significantly reduced, more than 34% compared with the control. Cell viability decreased 48 and 72 h after treatment to 45% and 37%, respectively. We also examined poly caspase, SA-beta-galactosidase (SA-beta-gal), and wound healing activities using WRE. All treatments induced an early poly caspase response and a significant reduction in cell migration. Further, we analyzed the transcript profile of the cells grown at 44.8 mg·mL-1 of WRE after 6 h using RNA sequencing (RNAseq) analysis. We identified 186 differentially expressed genes (DEGs), including 149 upregulated genes and 37 downregulated genes, in cells treated with WRE compared with the control. The differentially expressed genes were associated with NF-Kappa B signaling and TNF pathways. Crucial apoptosis-related genes such as BMF, NPTX1, NFKBIA, NFKBIE, and NFKBID might induce intrinsic and extrinsic apoptosis. Another possible mechanism is a high quantity of citrulline may lead to induction of apoptosis by the production of increased nitric oxide. Hence, our study suggests the potential anticancer properties of WRE and provides insights into its effects on cellular processes and gene expression in HRAC-769-P cells.


Carcinoma, Renal Cell , Citrullus , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/metabolism , Transcriptome , Citrullus/genetics , Fruit/metabolism , Citrulline/metabolism , Caspases/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism
5.
Front Plant Sci ; 14: 1200999, 2023.
Article En | MEDLINE | ID: mdl-37615029

Anthracnose, caused by the fungal pathogen Colletotrichum spp., is one of the most significant tomato diseases in the United States and worldwide. No commercial cultivars with anthracnose resistance are available, limiting resistant breeding. Cultivars with genetic resistance would significantly reduce crop losses, reduce the use of fungicides, and lessen the risks associated with chemical application. A recombinant inbred line (RIL) mapping population (N=243) has been made from a cross between the susceptible US28 cultivar and the resistant but semiwild and small-fruited 95L368 to identify quantitative trait loci (QTLs) associated with anthracnose resistance. The RIL population was phenotyped for resistance by inoculating ripe field-harvested tomato fruits with Colletotrichum coccodes for two seasons. In this study, we identified twenty QTLs underlying resistance, with a range of phenotypic variance of 4.5 to 17.2% using a skeletal linkage map and a GWAS. In addition, a QTLseq analysis was performed using deep sequencing of extreme bulks that validated QTL positions identified using traditional mapping and resolved candidate genes underlying various QTLs. We further validated AP2-like ethylene-responsive transcription factor, N-alpha-acetyltransferase (NatA), cytochrome P450, amidase family protein, tetratricopeptide repeat, bHLH transcription factor, and disease resistance protein RGA2-like using PCR allelic competitive extension (PACE) genotyping. PACE assays developed in this study will enable high-throughput screening for use in anthracnose resistance breeding in tomato.

6.
Metabolites ; 13(6)2023 Jun 16.
Article En | MEDLINE | ID: mdl-37367915

The field of drug discovery has recognized the significance of computer-aided drug design. Recent advancements in structure identification and characterization, bio-computational science and molecular biology have significantly contributed to the development of novel treatments for various diseases. Alzheimer's disease is prevalent in over 50 million affected people, with the pathological condition of amyloidal plaque formation by the beta-amyloidal peptide that results in lesions of the patient's brain, thus making the target prediction and treatment a hurdle. In this study, we evaluated the potential of 54 bioactive compounds from Justicia adhatoda L. and Sida cordifolia L. identified through LC-MS/MS against the ß-site amyloid precursor cleaving enzyme (beta-secretase) that results in the formation of amyloidal plaques. To study the drug-likeness of the phytocompounds, Lipinski's rule of five for ADME profiling and toxicity prediction was performed. Molecular docking was performed using auto-dock tool of PyRx software; molecular dynamic simulations were performed using the Schrodinger suite. Molecular docking against BACE-1 protein revealed that hecogenin, identified from S. cordifolia has a broad spectrum of pharmacological applications and a binding affinity score of -11.3 kcal/Mol. The Hecogenin-BACE-1 protein complex was found to be stable after 30 ns of MD simulation, resulting in its substantial stability. Further studies focusing on the in vivo neuroprotective activity of hecogenin against the disease will pave the way for efficient drug discovery from natural sources in a precise manner.

7.
Front Plant Sci ; 14: 1150204, 2023.
Article En | MEDLINE | ID: mdl-37152134

Sugar maple (Acer saccharum Marshall) is a temperate tree species in the northeastern parts of the United States and is economically important for its hardwood and syrup production. Sugar maple trees are highly vulnerable to changing climatic conditions, especially drought, so understanding the physiological, biochemical, and molecular responses is critical. The sugar maple saplings were subjected to drought stress for 7, 14, and 21 days and physiological data collected at 7, 14, and 21 days after stress (DAS) showed significantly reduced chlorophyll and Normalized Difference Vegetation Index with increasing drought stress time. The drought stress-induced biochemical changes revealed a higher accumulation of malondialdehyde, proline, and peroxidase activity in response to drought stress. Transcriptome analysis identified a total of 14,099 differentially expressed genes (DEGs); 328 were common among all stress periods. Among the DEGs, transcription factors (including NAC, HSF, ZFPs, GRFs, and ERF), chloroplast-related and stress-responsive genes such as peroxidases, membrane transporters, kinases, and protein detoxifiers were predominant. GO enrichment and KEGG pathway analysis revealed significantly enriched processes related to protein phosphorylation, transmembrane transport, nucleic acids, and metabolic, secondary metabolite biosynthesis pathways, circadian rhythm-plant, and carotenoid biosynthesis in response to drought stress. Time-series transcriptomic analysis revealed changes in gene regulation patterns in eight different clusters, and pathway analysis by individual clusters revealed a hub of stress-responsive pathways. In addition, qRT-PCR validation of selected DEGs revealed that the expression patterns were consistent with transcriptome analysis. The results from this study provide insights into the dynamics of physiological, biochemical, and gene responses to progressive drought stress and reveal the important stress-adaptive mechanisms of sugar maple saplings in response to drought stress.

8.
BMC Plant Biol ; 23(1): 126, 2023 Mar 06.
Article En | MEDLINE | ID: mdl-36872311

BACKGROUND: Blueberries (Vaccinium section Cyanococcus) are an economically important fruit crop in the United States. Understanding genetic structure and relationships in blueberries is essential to advance the genetic improvement of horticulturally important traits. In the present study, we investigated the genomic and evolutionary relationships in 195 blueberry accessions from five species (comprising 33 V. corymbosum, 14 V. boreale, 81 V. darrowii, 29 V. myrsinites, and 38 V. tenellum) using single nucleotide polymorphisms (SNPs) mined from genotyping-by-sequencing (GBS) data. RESULTS: GBS generated ~ 751 million raw reads, of which 79.7% were mapped to the reference genome V. corymbosum cv. Draper v1.0. After filtering (read depth > 3, minor allele frequency > 0.05, and call rate > 0.9), 60,518 SNPs were identified and used in further analyses. The 195 blueberry accessions formed three major clusters on the principal component (PC) analysis plot, in which the first two PCs accounted for 29.2% of the total genetic variance. Nucleotide diversity (π) was highest for V. tenellum and V. boreale (0.023 each), and lowest for V. darrowii (0.012). Using TreeMix analysis, we identified four migration events and deciphered gene flow among the selected species. In addition, we detected a strong V. boreale lineage in cultivated blueberry species. Pairwise SweeD analysis identified a wide sweep (encompassing 32 genes) as a strong signature of domestication on the scaffold VaccDscaff 12. From this region, five genes encoded topoisomerases, six genes encoded CAP-gly domain linker (which regulates the dynamics of the microtubule cytoskeleton), and three genes coded for GSL8 (involved in the synthesis of the cell wall component callose). One of the genes, augustus_masked-VaccDscaff12-processed-gene-172.10, is a homolog of Arabidopsis AT2G25010 and encodes the protein MAINTENANCE OF MERISTEMS-like involved in root and shoot growth. Additional genomic stratification by admixture analysis identified genetic lineages and species boundaries in blueberry accessions. The results from this study indicate that V. boreale is a genetically distant outgroup, while V. darrowii, V. myrsinites, and V. tenellum are closely related. CONCLUSION: Our study provides new insights into the evolution and genetic architecture of cultivated blueberries.


Arabidopsis , Blueberry Plants , Genomics , Pseudogenes , Cell Wall
10.
Front Genet ; 13: 1005158, 2022.
Article En | MEDLINE | ID: mdl-36204309

Since their introduction in Europe, pumpkins (Cucurbita maxima Duch.) have rapidly dispersed throughout the world. This is mainly because of their wide genetic diversity and Plasticity to thrive in a wide range of geographical regions across the world, their high nutritional value and suitability to integrate with local cuisines, and their long shelf life. Competition for growing the showy type or mammoth-sized pumpkins that produce the largest fruit of the entire plant kingdom has drawn attention. In this study, we used genome-wide single nucleotide polymorphisms to resolve admixture among different pumpkin groups. Also, to resolve population differentiation, genome-wide divergence and evolutionary forces underlying the evolution of mammoth-sized pumpkin. The admixture analysis indicates that the mammoth group (also called Display or Giant) evolved from the hubbard group with genome-wide introgressions from the buttercup group. We archived a set of private alleles underlying fruit development in mammoth group, and resolved haplotype level divergence involved in the evolutionary mechanisms. Our genome-wide association study identified three major allelic effects underlying various fruit-size genes in this study. For fruit weight, a missense variant in the homeobox-leucine zipper protein ATHB-20-like (S04_18528409) was significantly associated (false discovery rate = 0.000004) with fruit weight, while high allelic effect was consistent across the 3 years of the study. A cofactor (S08_217549) on chromosome 8 is strongly associated with fruit length, having superior allelic effect across the 3 years of this study. A missense variant (S10_4639871) on translocation protein SEC62 is a cofactor for fruit diameter. Several known molecular mechanisms are likely controlling giant fruit size, including endoreduplication, hormonal regulation, CLV-WUS signaling pathway, MADS-box family, and ubiquitin-proteasome pathway. This study provides a general framework for the evolutionary relationship among horticulture groups of C. maxima and elucidates the origins of rare variants contributing to the giant pumpkin fruit size.

11.
Int J Mol Sci ; 23(19)2022 Oct 06.
Article En | MEDLINE | ID: mdl-36233154

Many plants naturally synthesize and secrete secondary metabolites that exert an allelopathic effect, offering compelling alternatives to chemical herbicides. These natural herbicides are highly important for sustainable agricultural practices. Ailanthone is the chemical responsible for the herbicidal effect of Ailanthus altissima, or "tree of heaven". The molecular studies involving ailanthone's effect on plant growth are limited. In the current study, we combined whole-transcriptome and physiology analysis of three Arabidopsis thaliana ecotypes treated with ailanthone to identify the effect of this allelopathic chemical on genes and plant growth. Our physiology results showed 50% reduced root growth, high proline accumulation, and high reactive-oxygen-species accumulation in response to ailanthone stress. Deep transcriptome analysis revealed 528, 473, and 482 statistically significant differentially expressed genes for Col-0, Cvi-0, and U112-3 under ailanthone stress, including 131 genes shared among the three accessions. The common genes included 82 upregulated and 42 downregulated genes and varied in expression at least twofold. The study also revealed that 34 of the 131 genes had a similar expression pattern when Arabidopsis seedlings were subjected to other herbicides. Differentially expressed genes significantly induced in response to ailanthone included DTXL1, DTX1, ABCC3, NDB4, UGT74E2, and AZI1. Pathways of stress, development and hormone metabolism were significantly altered under ailanthone stress. These results suggest that ailanthone triggers a significant stress response in multiple pathways similar to other herbicides.


Arabidopsis Proteins , Arabidopsis , Herbicides , ATP-Binding Cassette Transporters/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Herbicides/metabolism , Herbicides/pharmacology , Hormones/metabolism , Oxygen/metabolism , Proline/metabolism , Quassins , Stress, Physiological/genetics , Transcriptome
12.
Genes (Basel) ; 13(10)2022 10 20.
Article En | MEDLINE | ID: mdl-36292794

Sida cordifolia is a medicinal shrub that is conventionally used in the Indian system of medicine;however, the genes contributing to its medicinal properties have been minimally explored, thus limiting its application. High-throughputsequencing and Liquid Chromatography with tandem mass spectrometry(LC-MS/MS) technologies were applied to unravel the medicinally important bioactive compounds. As a result, transcriptomic sequencing generated more than 12 GB of clean data, and 187,215 transcripts were obtained by de novoassembly. These transcripts were broadly classified into 20 classes, based on the gene ontology classification, and 6551 unigenes were annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG) database with more than 142 unigenes involved in the biosynthesis of secondary metabolites. LC-MS/MS analysis of three tissues of Sida cordifolia revealed that acacetin and procyanidin are some important metabolites identified thatcontribute to its medicinal value. Several key enzymes witha crucial role in phenylpropanoid and flavonoid biosynthetic pathways were identified, especially phenylalanine ammonia lyase, which might be an important rate-limiting enzyme. Real-Time Quantitative Reverse Transcription Polymerase chain reaction (qRT-PCR) analysis revealed enzymes, such as Phenylalanine ammonia lyase (PAL), Cinnamyl alcohol dehydrogenase 1 (CAD), Cinnamoyl-CoA reductase 1 (CF1) and Trans cinnamate 4-monooxygenase(TCM), which were predominantly expressed in root compared to leaf and stem tissue. The study provides a speculative insight for the screening of active metabolites and metabolic engineering in Sida cordifolia.


Proanthocyanidins , Gene Expression Regulation, Plant , Molecular Sequence Annotation , Transcriptome/genetics , Phenylalanine Ammonia-Lyase/genetics , Chromatography, Liquid , Tandem Mass Spectrometry , Gene Expression Profiling/methods , Flavonoids , Mixed Function Oxygenases/genetics , Cinnamates
13.
Front Plant Sci ; 13: 947164, 2022.
Article En | MEDLINE | ID: mdl-36186044

Pomegranate is an important fruit crop for ensuring livelihood and nutrition security in fragile semi-arid regions of the globe having limited irrigation resources. This is a high-value, nutritionally rich, and export-oriented agri-commodity that ensures high returns on investment to growers across the world. Although it is a valuable fruit crop, it has received only a limited genomics research outcome. To fast-track the pomegranate improvement program, de novo whole-genome sequencing of the main Indian cultivar 'Bhagawa' was initiated by the Indian Council of Agricultural Research-National Research Center on Pomegranate (ICAR-NRCP). We have demonstrated that a combination of commercially available technologies from Illumina, PacBio, 10X Genomics, and BioNano Genomics could be used efficiently for sequencing and reference-grade de novo assembly of the pomegranate genome. The research led to a final reference-quality genome assembly for 'Bhagawa' of 346.08 Mb in 342 scaffolds and an average N50 of 16.12 Mb and N90 of 1088.62 Kb. This assembly covered more than 98% of the estimated pomegranate genome size, 352.54 Mb. The LTR assembly index (LAI) value of 10 and 93.68% Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness score over the 1,440 ortholog genes of the completed pomegranate genome indicates the quality of the assembled pomegranate genome. Furthermore, 29,435 gene models were discovered with a mean transcript length of 2,954 bp and a mean coding sequence length 1,090 bp. Four transcript data samples of pomegranate tissues were mapped over the assembled 'Bhagawa' genome up to 95% significant matches, indicating the high quality of the assembled genome. We have compared the 'Bhagawa' genome with the genomes of the pomegranate cultivars 'Dabenzi' and 'Taishanhong.' We have also performed whole-genome phylogenetic analysis using Computational Analysis of Gene Family Evolution (CAFE) and found that Eucalyptus grandis and pomegranate diverged 64 (60-70) million years ago. About 1,573 protein-coding resistance genes identified in the 'Bhagawa' genome were classified into 32 domains. In all, 314 copies of miRNA belonging to 26 different families were identified in the 'Bhagawa' genome. The reference-quality genome assembly of 'Bhagawa' is certainly a significant genomic resource for accelerated pomegranate improvement.

14.
Mol Biol Rep ; 49(11): 10307-10314, 2022 Nov.
Article En | MEDLINE | ID: mdl-36097107

BACKGROUND: Justicia adhatoda is an important medicinal plant traditionally used in the Indian system of medicine and the absence of molecular-level studies in this plant hinders its wide use, hence the study was aimed to analyse the genes involved in its various pathways. METHODS AND RESULTS: The RNA isolated was subjected to Illumina sequencing. De novo assembly was performed using TRINITY software which produced 171,064 transcripts with 55,528 genes and N50 value of 2065 bp, followed by annotation of unigenes against NCBI, KEGG and Gene ontology databases resulted in 105,572 annotated unigenes and 40,288 non-annotated unigenes. A total of 5980 unigenes were mapped to 144 biochemical pathways, including the metabolism and biosynthesis pathways. The pathway analysis revealed the major transcripts involved in the tryptophan biosynthesis with TPM values of 6.0903, 33.6854, 11.527, 1.6959, and 8.1662 for Anthranilate synthase alpha, Anthranilate synthase beta, Arogenate/Prephenate dehydratase, Chorismate synthase and Chorismate mutase, respectively. The qRT-PCR validation of the key enzymes showed up-regulation in mid mature leaf when compared to root and young leaf tissue. A total of 16,154 SSRs were identified from the leaf transcriptome of J. Adhatoda ,which could be helpful in molecular breeding. CONCLUSIONS: The study aimed at identifying transcripts involved in the tryptophan biosynthesis pathway for its medicinal properties, as it acts as a precursor to the acridone alkaloid biosynthesis with major key enzymes and their validation. This is the first study that reports transcriptome assembly and annotation of J. adhatoda plant.


Justicia , Justicia/genetics , Biosynthetic Pathways/genetics , Molecular Sequence Annotation , Gene Expression Regulation, Plant/genetics , Anthranilate Synthase/genetics , Tryptophan/genetics , Gene Expression Profiling , Transcriptome/genetics , High-Throughput Nucleotide Sequencing/methods
15.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article En | MEDLINE | ID: mdl-36077322

The habanero pepper (Capsicum chinense) is an increasingly important spice and vegetable crop worldwide because of its high capsaicin content and pungent flavor. Diets supplemented with the phytochemicals found in habanero peppers might cause shifts in an organism's metabolism and gene expression. Thus, understanding how these interactions occur can reveal the potential health effects associated with such changes. We performed transcriptomic and metabolomic analyses of Drosophila melanogaster adult flies reared on a habanero pepper diet. We found 539 genes/59 metabolites that were differentially expressed/accumulated in flies fed a pepper versus control diet. Transcriptome results indicated that olfactory sensitivity and behavioral responses to the pepper diet were mediated by olfactory and nutrient-related genes including gustatory receptors (Gr63a, Gr66a, and Gr89a), odorant receptors (Or23a, Or59a, Or82a, and Orco), and odorant-binding proteins (Obp28a, Obp83a, Obp83b, Obp93a, and Obp99a). Metabolome analysis revealed that campesterol, sitosterol, and sucrose were highly upregulated and azelaic acid, ethyl phosphoric acid, and citric acid were the major metabolites downregulated in response to the habanero pepper diet. Further investigation by integration analysis between transcriptome and metabolome data at gene pathway levels revealed six unique enriched pathways, including phenylalanine metabolism; insect hormone biosynthesis; pyrimidine metabolism; glyoxylate, and dicarboxylate metabolism; glycine, serine, threonine metabolism; and glycerolipid metabolism. In view of the transcriptome and metabolome findings, our comprehensive analysis of the response to a pepper diet in Drosophila have implications for exploring the molecular mechanism of pepper consumption.


Capsicum , Piper nigrum , Animals , Capsicum/chemistry , Capsicum/genetics , Diet , Drosophila melanogaster/genetics , Metabolome , Piper nigrum/genetics , Transcriptome
16.
J Biol Chem ; 298(9): 102347, 2022 09.
Article En | MEDLINE | ID: mdl-35963433

Cell death-inducing DNA fragmentation factor-like effector C (CIDEC) expression in adipose tissue positively correlates with insulin sensitivity in obese humans. Further, E186X, a single-nucleotide CIDEC variant is associated with lipodystrophy, hypertriglyceridemia, and insulin resistance. To establish the unknown mechanistic link between CIDEC and maintenance of systemic glucose homeostasis, we generated transgenic mouse models expressing CIDEC (Ad-CIDECtg) and CIDEC E186X variant (Ad-CIDECmut) transgene specifically in the adipose tissue. We found that Ad-CIDECtg but not Ad-CIDECmut mice were protected against high-fat diet-induced glucose intolerance. Furthermore, we revealed the role of CIDEC in lipid metabolism using transcriptomics and lipidomics. Serum triglycerides, cholesterol, and low-density lipoproteins were lower in high-fat diet-fed Ad-CIDECtg mice compared to their littermate controls. Mechanistically, we demonstrated that CIDEC regulates the enzymatic activity of adipose triglyceride lipase via interacting with its activator, CGI-58, to reduce free fatty acid release and lipotoxicity. In addition, we confirmed that CIDEC is indeed a vital regulator of lipolysis in adipose tissue of obese humans, and treatment with recombinant CIDEC decreased triglyceride breakdown in visceral human adipose tissue. Our study unravels a central pathway whereby adipocyte-specific CIDEC plays a pivotal role in regulating adipose lipid metabolism and whole-body glucose homeostasis. In summary, our findings identify human CIDEC as a potential 'drug' or a 'druggable' target to reverse obesity-induced lipotoxicity and glucose intolerance.


Glucose Intolerance , Insulin Resistance , Animals , Cholesterol , Diet, High-Fat/adverse effects , Fatty Acids, Nonesterified , Glucose , Glucose Intolerance/genetics , Glucose Intolerance/prevention & control , Humans , Insulin Resistance/genetics , Lipase/genetics , Lipid Metabolism , Lipoproteins, LDL/metabolism , Mice , Nucleotides/metabolism , Obesity/genetics , Proteins/metabolism , Transgenes , Triglycerides
17.
Plants (Basel) ; 11(8)2022 Apr 07.
Article En | MEDLINE | ID: mdl-35448735

Potato (Solanum tuberosum L.) is an important food crop worldwide, and potato cyst nematodes (PCNs) are among the most serious pests. The identification of disease resistance genes and molecular markers for PCN infestation can aid in crop improvement research programs against PCN infestation. In the present study, we used high-throughput RNA sequencing to investigate the comprehensive resistance mechanisms induced by PCN infestation in the resistant cultivar Kufri Swarna and the susceptible cultivar Kufri Jyoti. PCN infestation induced 791 differentially expressed genes in resistant cultivar Kufri Swarna, comprising 438 upregulated and 353 downregulated genes. In susceptible cultivar Kufri Jyoti, 2225 differentially expressed genes were induced, comprising 1247 upregulated and 978 downregulated genes. We identified several disease resistance genes (KIN) and transcription factors (WRKY, HMG, and MYB) that were upregulated in resistant Kufri Swarna. The differentially expressed genes from several enriched KEGG pathways, including MAPK signaling, contributed to the disease resistance in Kufri Swarna. Functional network analysis showed that several cell wall biogenesis genes were induced in Kufri Swarna in response to infestation. This is the first study to identify underlying resistance mechanisms against PCN and host interaction in Indian potato varieties.

18.
PeerJ ; 9: e12343, 2021.
Article En | MEDLINE | ID: mdl-34722000

BACKGROUND: Watermelon seeds are a powerhouse of value-added traits such as proteins, free amino acids, vitamins, and essential minerals, offering a paleo-friendly dietary option. Despite the availability of substantial genetic variation, there is no sufficient information on the natural variation in seed-bound amino acids or proteins across the watermelon germplasm. This study aimed to analyze the natural variation in watermelon seed amino acids and total protein and explore underpinning genetic loci by genome-wide association study (GWAS). METHODS: The study evaluated the distribution of seed-bound free amino acids and total protein in 211 watermelon accessions of Citrullus spp, including 154 of Citrullus lanatus, 54 of Citrullus mucosospermus (egusi) and three of Citrullus amarus. We used the GWAS approach to associate seed phenotypes with 11,456 single nucleotide polymorphisms (SNPs) generated by genotyping-by-sequencing (GBS). RESULTS: Our results demonstrate a significant natural variation in different free amino acids and total protein content across accessions and geographic regions. The accessions with high protein content and proportion of essential amino acids warrant its use for value-added benefits in the food and feed industries via biofortification. The GWAS analysis identified 188 SNPs coinciding with 167 candidate genes associated with watermelon seed-bound amino acids and total protein. Clustering of SNPs associated with individual amino acids found by principal component analysis was independent of the speciation or cultivar groups and was not selected during the domestication of sweet watermelon. The identified candidate genes were involved in metabolic pathways associated with amino acid metabolism, such as Argininosuccinate synthase, explaining 7% of the variation in arginine content, which validate their functional relevance and potential for marker-assisted analysis selection. This study provides a platform for exploring potential gene loci involved in seed-bound amino acids metabolism, useful in genetic analysis and development of watermelon varieties with superior seed nutritional values.

19.
Front Genet ; 12: 704075, 2021.
Article En | MEDLINE | ID: mdl-34394192

Here we report on comprehensive chloroplast (cp) genome analysis of 16 pomegranate (Punica granatum L.) genotypes representing commercial cultivars, ornamental and wild types, through large-scale sequencing and assembling using next-generation sequencing (NGS) technology. Comparative genome analysis revealed that the size of cp genomes varied from 158,593 bp (in wild, "1201" and "1181") to 158,662 bp (cultivar, "Gul-e-Shah Red") among the genotypes, with characteristic quadripartite structures separated by a pair of inverted repeats (IRs). The higher conservation for the total number of coding and non-coding genes (rRNA and tRNA) and their sizes, and IRs (IR-A and IR-B) were observed across all the cp genomes. Interestingly, high variations were observed in sizes of large single copy (LSC, 88,976 to 89,044 bp) and small single copy (SSC, 18,682 to 18,684 bp) regions. Although, the structural organization of newly assembled cp genomes were comparable to that of previously reported cp genomes of pomegranate ("Helow," "Tunisia," and "Bhagawa"), the striking differences were observed with the Lagerstroemia lines, viz., Lagerstroemia intermedia (NC_0346620) and Lagerstroemia speciosa (NC_031414), which clearly confirmed previous findings. Furthermore, phylogenetic analysis also revealed that members outside the genus Punica were clubbed into a separate clade. The contraction and expansion analysis revealed that the structural variations in IRs, LSC, and SSC have significantly accounted for the evolution of cp genomes of Punica and L. intermedia over the periods. Microsatellite survey across cp genomes resulted in the identification of a total of 233 to 234 SSRs, with majority of them being mono- (A/T or C/G, 164-165 numbers), followed by di- (AT/AT or AG/CT, 54), tri- (6), tetra- (8), and pentanucleotides (1). Furthermore, the comparative structural variant analyses across cp genomes resulted in the identification of many varietal specific SNP/indel markers. In summary, our study has offered a successful development of large-scale cp genomics resources to leverage future genetic, taxonomical, and phylogenetic studies in pomegranate.

20.
Front Genet ; 12: 722519, 2021.
Article En | MEDLINE | ID: mdl-34456979

Gene expression was analyzed at 0- and 24-h post-inoculation of two inbred sorghum cultivars known to differ in response to inoculation with Colletotrichum sublineola, the fungal pathogen that causes anthracnose. QL3 is reported to have quantitative resistance, while Theis is susceptible to most pathotypes of the pathogen; RNASeq identified over 3,000 specific genes in both cultivars as showing significant changes in expression following inoculation; in all but one gene, the changes in QL3 and Thies were in the same direction. Many other genes showed significant changes in only one of the two cultivars. Overall, more genes were downregulated than upregulated. Differences in changes in expression levels of a few genes suggested potential roles for the difference in disease response between QL3 and Theis, but did not identify known resistance genes. Gene ontology (GO) and pathway enrichment analysis identified upregulation of 23 transcription factor encoding genes as well as genes involved in the production of secondary metabolites, which are part of a typical host defense reaction.

...